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ABSTRACT 
Hybrid Scheduling Problems (HSPs) combine temporal and 
finite-domain variables via hybrid constraints that dictate that 
specific bounds on temporal constraints rely on assignments to 
finite-domain variables.  Hybrid constraint tightening (HCT) 
reformulates hybrid constraints to apply the tightest consistent 
temporal bound possible, assisting in search space pruning.  The 
contribution of this paper is to empirically evaluate the HCT 
approach using a state-of-the-art Satisfiability Modulo Theory 
solver on realistic, interesting problems related to developing 
scheduling agents to assist people with cognitive impairments.  
We demonstrate that HCT leads to orders of magnitude reduction 
of search complexity.  The success of HCT is enhanced as we 
apply HCT to hybrid constraints involving increasing numbers of 
finite-domain variables and finite-domains with increasing size, as 
well as hybrid constraints expressing increasing temporal 
precision.  We show that while HCT reduces search complexity 
for all but the simplest problems, the relative effectiveness is 
dampened on problems with partially conditional temporal 
constraints and hybrid constraints with increasing temporal 
disjunctions.  Finally, we present our preliminary investigations 
that indicate that HCT can assist in increasing communication 
efficacy in a multiagent setting. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control 
Methods, and Search – scheduling.  

General Terms 
Algorithms, Performance, Experimentation 

Keywords 
Hybrid Constraint Tightening, Scheduling Agents 

1. INTRODUCTION 
People suffering from cognitive impairments often struggle to live 
life independently.  Recently, work has gone into creating 
systems that assist such people in completing everyday activities, 
such as scheduling their days [5]. For example, modeling a 
scheduling problem as a Simple Temporal Problem (STP) or a 
more general Disjunctive Temporal Problem (DTP) works well 
when scheduling a predetermined set of activities [5].  More 
generally, scheduling a day’s activities involves two important 

tasks: 1) selection: deciding which activities to do and how to 
perform them, and 2) scheduling: deciding when to perform such 
activities.  Our goal is to create scheduling agents that act on 
behalf of people with cognitive impairments by both selecting 
which activities to do and scheduling when to do them. 

Recognizing that the finite-domain Constraint Satisfaction 
Problem (fd-CSP) formulation handles selection tasks well, and 
that the DTP framework handles scheduling tasks well, Schwartz 
combined these approaches into a single framework, the Hybrid 
Scheduling Problem (HSP) [6].  The HSP framework allows 
finite-domain variables and temporal variables to interact through 
hybrid constraints, each of which is simply a disjunction of a 
finite-domain constraint and a temporal constraint.  While 
studying the suitability of the HSP model for scheduling agents, 
we developed hybrid constraint tightening (HCT), which 
reformulates hybrid constraints so as to enhance the ability of the 
finite-domain variables to inform the temporal variables and vice 
versa, increasing pruning during search [1]. 

This paper makes several novel contributions to these prior 
efforts.  First, we substantiate our claim that HCT can be used 
with arbitrary constraint system solvers by incorporating HCT 
into a state-of-the-art, off-the-shelf solver.  Whereas [1] focused 
on HCT’s analytical properties, we demonstrate empirically that 
HCT reduces the actual runtime of search by an order of 
magnitude while solving realistic, interesting problems.  
Additionally, we show that as scheduling agents handle 
conditional temporal constraints that are more general along 
certain dimensions, this speedup grows.  We also show that other 
generalizations of conditional temporal constraint structures can 
dampen the benefits of HCT.  Finally, we provide discussion 
about the appropriateness of using HCT and the HSP towards our 
goal of developing coordinated, autonomous scheduling agents to 
act on behalf of people with cognitive impairments, and though 
we have yet to develop complete, efficient strategies to solve 
multiagent HSPs, we estimate and discuss the impact of HCT on 
communication overhead. 

2. A MOTIVATING EXAMPLE 
Imagine a scheduling agent given the task of scheduling Bob’s 
appointments during a visit to a healthcare facility.  Bob has two 
appointments, both for routine checkups.  Each checkup has 
associated with it a subset of available, qualified doctors.  Dr. 
Smith can handle the first appointment; Dr. Jones can handle the 
second appointment, and Dr. Williams can handle either 
appointment.  Bob has allotted 60 minutes to his visit, which 
should be plenty of time considering each appointment should 
only take 20 minutes, though the appointments cannot overlap.  
The order in which the appointments occur does not matter.  If he 
meets with two different doctors, though, Bob likes to give 
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himself plenty of time to walk to the next doctor’s office and get 
settled (5-15 minutes depending on the doctor).   

To model this problem, the scheduling agent must represent 
various types of information.  First, it must capture the choices it 
has regarding selecting a doctor for each appointment.  Since 
there are a small number of choices here, it makes sense to 
represent these choices with finite-domain variables.  The first 
appointment (variable A1) has a finite-domain containing two 
elements, Dr. Williams (D1) and Dr. Smith (D2), while the 
domain of the second appointment (A2) also has two values, Dr. 
Williams and Dr. Jones (D3).  Although none exist in this 
example, constraints between variables could limit the allowable 
combinations of values, such as Bob not wanting to see Dr. 
Williams for both appointments.  Problems containing only finite-
domain variables and constraints are known as (finite-domain) 
Constraint Satisfaction Problems (fd-CSPs).  Next, the scheduling 
agent must represent the timing constraints.  First, it makes sense 
to represent each important point in time with timepoint variables; 
one for the starting and ending time of each appointment 
(A1.Start, A2.End, etc.).  This allows the scheduling agent to 
express the timing constraints as temporal differences, which 
constrain the difference between two timepoint variables with a 
temporal bound.  For example, A1.End – A1.Start  20 and 
A1.Start – A1.End  -20 represent the maximum and minimum 
durations of appointment A1 respectfully, and A2.End – A1. Start 

 60 and A1.End – A2.Start  60 enforce the 60 minute overall 
(makespan) constraint.   

The Simple Temporal Problem (STP) is a temporal problem that 
contains temporal differences as its constraints, and can be solved 
in polynomial time using an all-pairs-shortest-path-algorithm [4].  
However, temporal difference constraints cannot be used to 
simply prevent appointments from overlapping when the order of 
the appointments does not matter.  This requires a more general 
disjunctive temporal constraint, which expresses constraints as a 
disjunction of temporal difference constraints.  For example, a 
general non-overlap constraint would look like A1.End – A2.Start 

 0 || A2.End – A1.Start  0, or in words, A1 must end before A2 
starts or A2 must end before A1 starts.  A problem containing 
these more general temporal constraints is called the Disjunctive 
Temporal Problem (DTP).  DTPs are solved by selecting a 
temporal difference from each disjunctive temporal constraint to 
enforce.  After a complete selection is made, the resulting 
component STP can be solved in polynomial time; however, since 
there are exponentially many such component STPs, solving 
DTPs in general takes exponential time [4].  Note that though we 
claimed Bob’s non-overlap constraints actually depend on which 
doctors are selected, we have not accounted for this in our 
description yet.  Before we explain how to model these 
constraints, we formally introduce the hybrid scheduling problem. 

3. BACKGROUND 

3.1 The HSP 
DTPs are good for scheduling when to do things, and fd-CSPs are 
good for deciding what combination of things to do. A Hybrid 
Scheduling Problem (HSP) [6] combines the full expressive 
power of fd-CSPs and DTPs into a single framework. A HSP is a 
tuple <V, C>. The set of variables V can be partitioned into two 
sets: VF, the set of finite-domain variables, each with its own 

finite-domain of possible values, DF; and VT, the set of temporal 
variables each with temporal domain DT, where DT contains real 
numbers and is considered implicit. The set of constraints C can 
be partitioned into three sets: CF, the set of finite-domain 
constraints defined over VF; CT, the set of disjunctive temporal 
constraints defined over VT; and CH, the set of hybrid constraints 
defined over VF ∪ VT excluding CF and CT. A hybrid constraint is 
defined to be the disjunction of exactly one finite-domain 
constraint and exactly one disjunctive temporal constraint.  A 
HSP is solved when a satisfying assignment is made to each 
variable in V such that all the constraints in C are respected. 
Clearly, a solution to the overall HSP problem must also be a 
solution to the fd-CSP sub-problem <VF, CF> and to the temporal 
CSP sub-problem <VT, CT>.  However, due to CH, arbitrary 
solutions to these pure subproblems cannot necessarily be 
combined to solve the overall HSP.  

Returning to the example, the lag time between appointments 
depends on which doctors are selected.  We call such constraints 
conditional temporal constraints.  We express such constraints 
with a group of hybrid constraints.  Figure 1 (upper) expresses the 
general conditional temporal constraint enforcing the non-overlap 
constraint of the problem.  Notice that Figure 1 (middle) uses 
hybrid constraints in their implicative form to demonstrate that 
the values the temporal bounds (B1 and B2) take depend on the 
assignments to the finite variables.  This particular conditional 
temporal constraint contains two finite variables (A1 and A2), a 
disjunction of two temporal differences, and requires four hybrid 
constraints to express, since each variable has two values, 
yielding four possible combinations of values. 

 
Figure 1.  Example conditional temporal constraint (upper) 
whose bounds are subject to untightened hybrid constraints 
(middle) or equivalent tightened hybrid constraints (lower). 

3.2 The HCT Algorithm 
As a precursor to the more general HSP, Moffitt, Peintner, and 
Pollack [4] described a finite-domain extension to the DTP and 
noted that conditional temporal constraints have the property that, 
at any point in time, one can enforce the temporal constraint with 
the tightest bound consistent with all remaining feasible values.  
Their least-commitment approach augments a search algorithm to 
apply and prune more of the search space.  We realized that 
similar pruning can be achieved by reformulating the hybrid 
constraints in an independent preprocessing step called Hybrid 
Constraint Tightening (HCT), instead of altering the search 
algorithm to perform similar reasoning but doing so a possibly 
exponential number of times [1].   

Our HCT algorithm groups all hybrid constraints involved in a 
conditional temporal constraint together and then sorts them based 
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on their temporal bounds.  Figure 1 (middle) shows the sorted 
group of hybrid constraints relating to our example.  The 
algorithm then visits each hybrid constraint in sequence, starting 
with the tightest, and reformulates each constraint by replacing its 
finite-domain constraint with a new finite-domain constraint.  The 
algorithm forms this new finite-domain constraint by merging its 
current set of allowable assignments with the set of allowable 
assignments of the tighter hybrid constraints.  Figure 1 (lower) 
demonstrates how HCT would reformulate the constraints from 
our example.  This algorithm runs in polynomial time, and the 
reformulated constraints result in a sound and complete search.  A 
more complete description and analysis of this algorithm as well 
as a comparison to previous approaches appears in [1].  By 
adopting HCT, our scheduling agent can apply the tightest 
possible temporal bounds for the conditional temporal variable at 
all times, which our previous analysis suggests can help 
significantly reduce the temporal and, in turn, finite search spaces. 

4. EMPIRICAL METHODOLOGY 
The purpose of our empirical analysis is to look beyond abstract 
time-complexity analyses to more fully understand the space of 
HSPs where HCT is particularly effective, as well as to test our 
claim that HCT can be incorporated into off-the-shelf solvers.  
Thus, we present a problem generation technique to give us 
realistic, interesting problems, introduce HCT as a preprocessing 
step to a state-of-the-art SMT solver, and track performance 
metrics that illuminate HCT’s effect on search complexity. 

4.1 Problem Generation 
Since HSPs, and hybrid constraints in particular, are largely the 
result of merging components from fd-CSPs and DTPs, aspects 
that influence the solution complexity of solving fd-CSPs and 
DTPs will clearly influence the solution complexity of HSPs.  
Before we discuss how we generate realistic, interesting 
scheduling problems, we first review the parameters known to 
affect solution complexity in generating interesting fd-CSPs and 
DTPs.  First, fd-CSP generators [8] often use a variation of the 
parameters <NFD, mFD, kFD, dFD, pFD>, where NFD is the number of 
variables, mFD is the number of constraints, kFD is the arity of each 
constraint, dFD is the maximum domain size, and pFD is the 
density of allowable tuples for a particular constraint.  Canonical 
DTP generators [7] use the parameters <NT, mT, kT, LT>, where NT 
is the number of timepoints, mT is the number of constraints, kT is 
the number of disjuncts per constraint, and where all bounds are 
chosen uniformly between [-LT, LT].  Both types of generators 
have parameters dictating the number of variables (NFD, NT) the 
number of constraints (mFD, mT), as well as the structure and 
“tightness” of the constraints (kFD, dFD, pFD, kT, LT).  Exploring 
HCT’s effect on the entire range of possible hybrid constraint 
structures, then, involves investigating the effect of varying each 
parameter in the union of these two problem generators types.    

We adopt a strategy for generating difficult scheduling problems 
containing both finite-domain and temporal components from [4], 
which we adapt to loosely match our example.  The generator 
takes parameters <A, L, B, pL, pO, CMAX, pH, pFD, kFD, kT >, where 
A is the number of appointments the scheduling agent must 
schedule, L is the number of locations (with one doctor per 
location), B is a bounds matrix indicating a more general lag time, 
ranging from 5 to 40 (including extra time for paper work, 
recovery period from stress tests, etc) between each pair of 

locations, pL is the probability that the doctor at a particular 
location is able to perform the appointment, pO is the probability 
that a non-overlap constraint is enforced between any pair of 
appointments (e.g., appointments require the presence of a shared 
resident nurse), CMAX is the maximum allowable makespan of the 
schedule, or the total length of time the patients will be visiting 
the medical campus, pH dictates the relative constraint 
composition of the problem (hybrid vs. non-hybrid constraints), 
and finally pFD, kFD, and kT, all correspond directly to their 
original semantics.  Feasible and nontrivial problems are 
guaranteed by calculating the minimum possible makespan for 
each parameter setting.    

These parameters relate directly to those of the fd-CSP and DTP 
generators.  First, A encompasses both NFD and NT, since each 
activity has two timepoints (start and end) and one finite-domain 
variable (location) associated with it.  Thus, NFD and NT grow 
linearly as A grows.  Next, L represents dFD, the maximum size of 
domain in fd-CSPs, with pL probabilistically dictating how large 
each individual finite-domain is.  CMAX correlates with LT, with B 
restricting bounds to realistic times.  Finally, pO probabilistically 
determines the number of constraints in the problem, thus 
capturing both mFD and mT.  Later, we will discuss how we adapt 
the generator to capture the effect that HCT has on the structural 
changes of hybrid constraints implied by pH, pFD, kFD, and kT. 

We generate 50 problems for each setting of the parameters, 
varying parameters as described in Section 5.  Any parameter that 
we do not vary in a given experiment is set to its following default 
value:  A=10, L=6, pL=0.33, pO=0.9, kFD=2, kT=2, pFD=1.0, 
pH=1.0, B[i][i] = 0 and B[i][j] is selected uniformly from [5,40] 
when i  j, and CMAX is set as described above. 

4.2 SMT Solvers 
As noted in [6], Satisfiability Modulo Theory (SMT) technology 
represents the state-of-the-art in solving HSPs.  SMT solvers 
generalize powerful boolean satisfiability (SAT) solving 
techniques with additional first-order theories.  Z3 is a highly 
competitive SMT solver published by Microsoft Research, and 
widely available for download [2].  For our experimentation, we 
use Z3 version 1.2 on a Windows XP machine with 2.0 GHz 
processor and 2.0 GB of RAM.  Since there is an element of 
randomness associated with the Z3 solver, we average the results 
for each problem across 20 uniquely seeded runs.  

4.3 Performance Metrics 
The SMT solver we use reports three statistics relating to search 
complexity.  A decision is made any time the solver must choose 
a literal in a disjunctive clause, similar to a variable assignment in 
more traditional fd-CSP nomenclature.  A conflict  occurs any 
time the solver encounters an empty clause that leads to 
backtracking, similar to a variable with an empty domain.   
Finally, the solver also reports the amount of time that is required 
before a consistent assignment has been found.  Since we are most 
interested in discovering the space of HSPs for which HCT is 
most effective, we will often report speedup, or the ratio of the 
number of decisions, conflicts, or time using HCT to the 
corresponding metric without HCT.  All speedups have been 
found to be statistically significant using a students paired T-test, 
unless otherwise noted. 
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5. EMIRICAL RESULTS 
We explore the efficacy of HCT along each of the dimensions 
mentioned in Section 4.1.  First, we look at how HCT changes 
search performance as we scale the problem size and difficulty.  
Next we show that the margin of improvement of HCT varies as 
the structure of the conditional temporal constraints varies.  We 
examine four generalizations of this structure for which relative 
HCT performance improves.  Finally, we examine two 
generalizations of conditional temporal constraint structure for 
which applying HCT becomes less beneficial.  It is important to 
note that we easily succeeded in overlaying HCT on Z3.  This 
was done by HCT performing the reformulation on the original 
HSP, and then translating it to an SMT problem, using a process 
described in [6]. 

5.1 The Efficacy of HCT on Problems with 
Simple Hybrid Constraints 
Given our choice to model our scheduling problem as a HSP, it is 
important to show that HCT is effective as the number of 
activities (A) and constraints (pO) increases.  We examine scaling 
these two dimensions in the following subsections. 

5.1.1 Increasing the Number of Activities 
The exponential nature of search in the HSP means it is critical 
that any approach to improve the effectiveness of search scales 
well as the number of activities (A) increases.  In this section, we 
increase the number of activities involved in the problem, while 
allowing the number of non-overlap constraints to grow 
proportionally based on pO as described in Section 4.1.  This 
scaling is similar to imagining that instead of scheduling just two 
doctor appointments for Bob, a scheduling agent has been handed 
the task of scheduling appointments for an increasing number of 
people.   
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Figure 2.  Logarithmic Scale of the Number of Conflicts, 

Decisions,  and Seconds as Agents Handle Additional 
Activities 

Figure 2 shows how the median number of conflicts, decisions, 
and time required for search with and without HCT grows, using a 
log scale on problems with 7 to 15 activities.  Overall, HCT yields 
an improvement of nearly an order of magnitude, regardless of the 
size of the problem.  However, the difference in time for smaller 
problems is much less significant, and in fact, there is a visible 
crossover point between 8 and 9 activities.  Thus, for more than 
half of the problems with fewer than 9 activities, the complexity 
savings yielded by HCT does not overcome the overhead of 
performing the HCT preprocessing algorithm.  While we mostly 
care about relative performance, Figure 2 reports median, 

absolute statistics to inform the reader of the general complexity 
of the problem space and demonstrates that HCT yields an 
improvement both in expectation and for the majority (median) of 
the problems.  All subsequent figures will report only relative 
performance (in terms of speedup). 

5.1.2 Increasing the Number of Constraints 
Although our strategy for setting CMAX already guarantees the 
tightest feasible makespan, the burden on search increases as we 
increase pO.  It is easy for the scheduler to find a feasible schedule 
for a problem with no overlap constraints: simply schedule 
everything at the same time.  However, by adding a non-overlap 
constraint, the solver may have to search over the possible orders 
in which the appointments might occur before finding an order 
that respects the minimal feasible CMAX, since the lag time from 
one doctor to another is not necessarily reflexive.  Adding non-
overlap constraints increases the possible appointment orderings 
that must be searched before finding an ordering that “fits”.  
Figure 3, which varies pO while holding the number of activities 
steady, is similar to Figure 2 in many qualitative ways.  There is 
an initial period where the overall runtime using the HCT fails to 
significantly beat the runtime of search without HCT.  Further, it 
is obvious that sufficiently many constraints are needed before 
HCT yields improvements in time efficiency that match the 
significance we see in the other statistics, though, overall, HCT 
scales well with the number of constraints.   
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Figure 3.  Agents Handling More Constraints 

5.2 Conditional Temporal Constraint 
Generalizations That Increase HCT Efficacy 
In this section, we examine generalizations of the conditional 
temporal constraint representation by varying the settings of 
parameters pH, dFD, kFD, and CMAX.  These generalizations all have 
one thing in common: scheduling agents using HCT enjoy an 
increased speedup over scheduling agents not using HCT.  This is 
critical because realistic, interesting problems tend to push the 
boundaries of problem representations in these ways. 

5.2.1 Increasing Temporal Constraint Precision 
Consider the example conditional temporal constraint in Figure 1.  
A knowledge engineer could replace B1 and B2 with their 
respective minimum possible values (-15 for both) instead of 
allowing them to be conditional on finite-domain variables.  The 
result is that all these conditional temporal constraints could be 
approximated with more restrictive, non-conditional temporal 
constraints.  Such a decision would come at the cost of temporal 
constraints that imply tighter bounds than needed, resulting in 
schedules with unnecessary slack time, and more alarmingly, 
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resulting in an algorithm that is no longer complete (with respect 
to the original, more general constraints).  For example, by 
always spending 15 minutes between appointments, the 
scheduling agent would have not been able to find Bob a feasible 
schedule if he only had 45 minutes even though one exists using 
conditional temporal constraints.  To test how HCT performs on 
these problems, we duplicate the experimentation of Section 
5.1.2.  However, we now hold pO constant while we vary pH, 
which is the probability that a non-overlap constraint is expressed 
using a conditional temporal constraint instead of the 
corresponding non-conditional temporal constraint.   
Figure 4 shows that speedup increases with pH across the 
statistics, although the benefit does not overcome the 
preprocessing overhead until pH > 0.2. Beyond the results in 
Figure 4, note that, though it may seem that replacing normal 
temporal constraints with their hybrid counter-parts would lead to 
a more complex search, solving the problem containing only 
hybrid non-overlap constraints using HCT (pH=1.0) finds a 
solution over 30 times faster than it takes the same solver to find a 
solution using only temporal constraints (pH=0.0).  Furthermore, 
when pH=1.0 search is complete and does not force unnecessary 
slack into the schedule. 
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Figure 4.  Increasing Temporal Constraints Precision 

5.2.2 Increasing Finite-Domain Size 
Our motivating example involved a scheduling agent selecting 
between two doctors for each appointment, and as a result, the 
conditional temporal constraint enforcing non-overlap contained 
four hybrid constraints.  Similarly, our problem generator 
constructs finite-domains containing, in expectation, two values.  
However, more generally, a scheduling agent must handle 
temporal constraints conditioned on finite-domains even as the 
number of values per domain (dFD) increases.  If the domains of 
A1 and A2 from the example problem both contained only a 
single doctor, the conditional temporal constraint in Figure 1 
would have been expressed using a single hybrid constraint, since 
only one consistent finite-domain assignment would exist.  Thus 
B1 and B2 could simply be replaced with the bounds of the sole 
hybrid constraint, eliminating the need for HCT.  So for HCT to 
have any effect at all, an agent must be able to select values for at 
least some of the finite-domain variables that influence the 
bounds on corresponding temporal constraints.  As the finite-
domains that a temporal constraint is conditioned on grow, more 
hybrid constraints are needed to express the overarching 
conditional temporal constraint, one for each possible 
combination of value assignments.  For example, suppose A1 was 
a more routine physical, and thus could be performed by any of 8 
doctors.  The conditional temporal constraint would now require 
16 hybrid constraints, instead of four like in Figure 1 (middle).  
We explore the impact of HCT when increasing the number of 

hybrid constraints used to express a conditional temporal 
constraint. 
HCT works by lifting information common to multiple finite-
domain variable/value assignments involved in a particular 
conditional temporal constraint, and using that information to 
assist in pruning. Since the overall search space grows 
exponentially as the size of the finite-domains grow, we 
hypothesize that any information that can help pruning may 
become increasingly valuable.  We test this hypothesis by varying 
the domain sizes of the finite-domain variables in our current 
doctor appointment scheduling domain.  Since previously the size 
of variable domains were probabilistically determined (each 
doctor can service each appointment with a given probability), we 
altered the formulation slightly, replacing pL with a new 
parameter nL, which dictates the number of doctors who can 
service the appointment (size of each finite-domain), with doctors 
being chosen randomly from the pool of doctors with uniform 
probability.  Since we had been using a pL value of 0.33, we 
emulate this by updating L to be equal to 3*nL for each problem.   
As shown in Figure 5, HCT grows in effectiveness as the number 
of values per finite-domain variable increases.   While we see 
immediate benefit in the speedup of decisions and conflicts, it 
takes problems with at least 4 values in each domain before this 
reduction in complexity compensates for the preprocessing 
overhead.  This confirms our hypothesis that HCT works best 
when temporal bounds are dependent on many values, each 
specified as a hybrid constraint, allowing search to prune using 
the tightest consistent value.   
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Figure 5.  Increasing Finite Domain Size 

5.2.3 Increasing Finite Variables 
Section 5.2.2 demonstrates that, as the number of values per 
finite-domain variable involved in a conditional temporal 
constraint increases, HCT becomes increasingly important for 
efficiently finding a schedule.  However, instead of increasing the 
number of values per finite-domain, we could also generalize 
conditional temporal constraints by increasing the number of 
finite variables on which they depend.  This is achieved by 
increasing the finite-domain arity (kFD) of the hybrid constraints.  
The conditional temporal constraint of our original example 
(Figure 1) represented a non-overlap constraint whose bounds 
depended on two finite-domain variables: the doctors selected for 
each appointment.  However, more generally, the lag time 
required between appointments could depend on any number of 
variables (e.g., also paperwork requirements, recovery time, etc.).  
Such a change would require hybrid constraints whose finite-
domain component contains either fewer (or more) variables. 
As Section 5.2.2 demonstrates, increasing the number of hybrid 
constraints used to express a conditional temporal constraint (due 
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to larger finite-domains) increases the efficacy of HCT.  So to 
avoid conflating these results, we ensure that each conditional 
temporal constraint depends on a constant number of hybrid 
constraints by using the nL parameter to adjust the number of 
values in the domain of each finite-domain variable so that the 
total number of possible assignments is held constant (e.g., one 
variable with 9 elements in its domain is replaced with two 
variables, each with 3 elements in their domains).  As discussed 
earlier, HCT excels at applying the tightest consistent bound 
possible regardless of the number of remaining domain values.  
So, whereas an untightened constraint requires a full assignment 
to every involved finite-domain variable, tightened hybrid 
constraints can successfully leverage knowledge from partial 
assignments to tighten the bounds on the respective temporal 
constraint.  Therefore, it is our expectation that HCT will be more 
effective as temporal constraints become conditioned on an 
increasing number of variables. 
Figure 6 confirms our expectation that HCT’s efficacy increases 
as the number of variables increases.  This result is important 
since, combined with 5.2.2, knowledge engineers can have less 
fear of overwhelming scheduling agents by giving them more 
control over deciding aspects of activities that impact the 
schedule.  Notice that speed-ups, reported using a logarithmic 
scale, are much higher in general than occurred in the experiments 
seen so far.  This is because temporal constraints were 
conditioned on many more finite-domain assignments, as well as 
fewer overall activities, and this magnifies the effect seen in 5.2.2.   

1

10

100

1000

1 2 3
Number of Finite Variables in Conditional Temporal Constraint

Sp
ee

du
p

Conflicts
Decisions
Time

 
Figure 6.  Increasing the Number of Finite-domain Variables 

5.2.4 Finer Granularity of Temporal Bounds 
Time is inherently continuous, and the DTP exploits this for 
greater scheduling flexibility while mitigating the potential 
exponential blowup often associated with dealing with an 
infinitely large domain.  Since the DTP, and thus implicitly the 
HSP as well, remains largely agnostic to the granularity of 
temporal bounds, it is worth investigating if the HCT process also 
remains unaffected.  In the extreme, imagine that all the temporal 
bounds in Figure 1 (middle) were the same value.  Here, HCT 
would reformulate the hybrid constraint into a single hybrid 
constraint, and thus a single, inevitable non-conditional temporal 
constraint.  Though search would be able to exploit this constraint 
immediately, no further opportunities would exist for tightening 
the bounds.  In contrast, when each of the temporal bounds is 
unique, these bounds provide significant tightening opportunities 
as search progresses.  In the experiments so far, all temporal 
bounds were chosen uniformly from integers between 5 and 40 
(35 different bounds).  We test how HCT performs as we change 
the number of allowable values to choose from, ranging from 1 to 
35, corresponding to varying levels of granularity.  We do this by 

selecting, for example, two integers uniformly from [5,40], and 
then assigning temporal bounds randomly from this pair of values.   
Figure 7 shows that, in fact, as scheduling agents handle temporal 
constraints expressed using an increasing number of unique 
bounds, the speedup achieved by applying HCT also grows.  This 
is good news for scheduling agents; HCT mitigates computational 
concerns over expressing temporal constraints as precisely as 
possible, without concern for the granularity at which temporal 
bounds are chosen.  Once again, we see that the importance of 
HCT grows as we give scheduling agents increasingly general 
conditional temporal constraints.  HCT  assists search in 
exploiting even subtle differences in temporal bounds.   
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Figure 7.  Finer Granularity of Temporal Bounds 

5.3 Conditional Temporal Constraint 
Generalizations That Decrease HCT Efficacy 
Unfortunately, while we have shown HCT efficacy grows with 
increasing generality along dimensions like the number of 
variables and values they are conditioned on, HCT efficacy does 
not grow with increasingly general hybrid constraints across all 
dimensions.  Here we examine two such generalizations, 
involving pFD and kT, that dampen HCT’s ability to assist in 
pruning the search space.  It is important to note that while certain 
conditional temporal constraint structures decrease the relative 
benefits of HCT, the only time applying HCT is actually 
detrimental is when the time cost associated with the applying the 
HCT algorithm does not outweigh the benefits of the HCT 
reformulation of constraints on sufficiently easy problems. 

5.3.1 Partially Conditional Temporal Constraints 
In Figure 1 (middle), every possible finite-domain assignment 
combination is involved in a hybrid constraint and implies a 
unique set of temporal bounds. However, in general it is not 
required that every assignment has to imply a temporal bound.  
This would correspond to Figure 1 (middle) where one or more of 
the hybrid constraints were eliminated.  For example, imagine that 
the constraint in Figure 1 was between appointments belonging to 
two different patients.  Then, we might only care about not 
overlapping when both appointments are with the same doctor.  In 
this case, all but the first row of Figure 1 (middle) could be 
eliminated.   A hybrid constraint thus not only expresses which 
temporal bound to enforce, but also, by its presence, if a temporal 
bound should be enforced at all.  We call this generalization a 
partially conditional temporal constraint.  To investigate the 
effect that these more general partially conditional temporal 
constraints have on HCT efficacy, we vary the parameter pFD , 
which is the probability that a particular assignment of values to 
the finite-domain variables will imply a temporal constraint in a 
given conditional temporal constraint. 
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Decreasing pFD is likely to change the effectiveness of HCT.  
When pFD = 1.0, tightened hybrid constraints can immediately 
apply the tightest consistent temporal constraint with the 
remaining values of the finite-domain constraints to assist in 
pruning the temporal space, with the bounds tightening as  the 
domains of the finite-domain variables are reduced.  With pFD < 
1.0, the tightened hybrid constraints will still apply the tightest 
consistent temporal constraint; however now the tightest 
consistent constraint may, in fact, be no constraint at all.  
Furthermore, HCT is now lifting information from a smaller set of 
value combinations, which, shown in 5.2.2, decreases its efficacy.  
Figure 8 confirms that as pFD decreases, so does the relative 
effectiveness of HCT.  Partial specification of temporal bounds 
dampens the ability of HCT to lift and use information as 
successfully during search.  Not only does the relative 
performance degrade as pFD decreases, there is actually a span of 
pFD where the runtime overhead of performing and using HCT 
exceeds the reduction in decisions and conflicts.  Scheduling 
agents must use HCT judiciously when their problems contain 
conditional temporal constraints where the majority of the value 
combinations do not imply temporal constraints.   
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Figure 8.  Partially Conditional Temporal Constraints 

5.3.2 Increasing Temporal Disjunctions 
In Figure 1 (upper) we showed that a non-overlap, conditional 
temporal constraint is expressed by using two temporal 
disjunctions whose temporal bounds were both conditioned on the 
assignment of values to finite variables.  However, a conditional 
temporal constraint, just like a normal temporal constraint, is not 
limited in the number of temporal differences it can involve in its 
disjunction, and can have any temporal arity, kT.  In fact, it is 
completely realistic to assume that one doctor appointment 
depends on the results of another.  For example, if A1 must occur 
before A2, Figure 1 (upper) could be replaced with a temporal 
constraint looking like A1.End – A2.Start  B1 (where we remove 
the disjunction).  Thus, we generalize conditional temporal 
constraints by generalizing the structure of the temporal constraint 
itself, varying the number of temporal disjuncts involved.   
We first alter our example to contain constraints with a single 
temporal difference by replacing the current non-overlap 
constraints with non-overlap constraints where the relative order 
of appointments has already been determined as described above.  
Although conditional temporal constraints in problems we are 
interested in tend to contain disjunctions of two or fewer temporal 
differences, we can also alter the problem to contain conditional 
temporal constraint with three or more temporal disjunctions.  
Assume that doctors have two shifts, with a 60 minute break for 
lunch.  The doctors may be required to change rooms for their 
afternoon session, thus travel times between doctors on campus 
may change after lunch.  In this case, there would be two sets of 

non-overlap constraints, one for the morning and one for the 
afternoon, each containing disjunctions among four temporal 
differences.  To capture this situation, a “morning” hybrid 
constraint would contain a disjunction of four temporal 
differences: either the appointments A1 and A2 do not overlap (as 
expressed in Figure 1 (top))  or one of the activities occurs in the 
afternoon (Noon – A1.Start  0 v Noon – A2.Start  0).  A similar 
constraint is introduced to enforce afternoon constraints.   
The number of temporal differences involved in a hybrid 
constraint has a direct effect on the runtime of the HCT algorithm, 
since the tightest bound must be discovered for each temporal 
difference, causing a linear increase in runtime.  We expect that as 
the number of temporal disjuncts involved in hybrid constraints 
grows, the effectiveness of HCT will diminish, because a 
tightened hybrid constraint will have a less immediate impact.  
For example, if a scheduling agent knows ahead of time that one 
appointment must end at least five minutes before another 
appointment starts, it can take advantage of this information to 
immediately prune the search space.  In the case that the ordering 
of appointments is irrelevant, the agent then knows either the first 
appointment ends at least 5 minutes before the start of the second, 
or the second appointment ends 5 minutes before the start of the 
first.  At this point, the scheduling agent must decide on an 
ordering before it can apply the knowledge gleaned from HCT. 
Figure 9 confirms that HCT prunes the search space more 
effectively on problems containing hybrid constraints with only a 
single temporal disjunction, with the speedup of conflicts and 
decisions decreasing nearly identically.  Surprisingly, the runtime 
speedup actually increases slightly with increases in the number 
of temporal disjuncts.  This is partially an artifact of overall 
search complexity.  Problems with only a single temporal disjunct 
require search over only the finite-domain variables, while 
problems containing more temporal disjuncts require search over 
both finite-domain and temporal meta-variables.  Thus, problems 
containing only a single temporal disjunct are solved much more 
quickly, regardless of whether HCT is used or not, and so we see 
a bit of a horizon effect where the problems are solved so quickly 
that the HCT overhead prevents the time speedup from reaching 
speedup levels similar to those seen in the number of decisions.   
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Figure 9.  Increasing Temporal Disjunctions 

6. DISCUSSION 
This paper takes significant steps forward in our understanding of 
HSP solution methods, and in particular about using HCT 
preprocessing.  Validating that HCT can be applied easily to off-
the-shelf search algorithms expands the applicability of HCT to a 
wider variety of cutting-edge solvers.  Our systematic 
examination of performance over the space of HSPs, especially 
the structure of hybrid constraints, leads to a more complete 
understanding of when HCT can be applied most successfully.  
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HCT scales well with the number of activities and constraints, and 
is only detrimental when problems are too easy, leading to 
preprocessing costs that exceed the gains.  We showed that 
scheduling agents can use HCT to solve problems containing 
conditional temporal constraints with increasing finite-domain 
variable choices and bounds expressed at finer temporal 
granularity more efficiently.  Although we noted that HCT 
becomes less effective when applied to partially conditional 
temporal constraints and conditional temporal constraints with 
increasingly large temporal disjunctions, the upside is that using 
HCT sill improves the temporal complexity on HSPs with these 
constraints.  Furthermore, challenging problems generally contain 
a rich mixture of hybrid constraint structures, leading to an order 
(or greater) of magnitude reduction in solver runtime thanks to 
HCT.   
Our next steps are to use the HSP for scheduling problems that are 
distributed across multiple scheduling agents, each autonomously 
scheduling on behalf of a person with possible cognitive 
disabilities. This paper highlights the effectiveness of using HCT 
to prune the search space to speed performance.  However, this 
kind of forward checking could be costly when a HSP is 
distributed across multiple agents, because to perform effective 
pruning can require significant communication about partial 
assignments.  Figure 10 shows our empirically generated 
estimates of the impact of using HCT on communication based on 
a centralized, sequential search using a primitive solver (that we 
could instrument for this purpose) lent to us by Schwartz [6].  We 
estimate the upper-bound on the frequency of communication as 
the number of agents increases by tallying every time a change is 
made in one agent that could potentially affect another agent, 
while we estimate the lower bound by optimistically assuming 
that all communication between a pair of agents during a decision 
cycle could be aggregated into a single message. 
Prior to search, the increased pruning does in fact lead to a much 
higher upper-bound on the amount of communication when HCT 
is used.  However, once search commences, the overall 
communication is reduced significantly, due to less backtracking 
thanks to HCT’s forward-checking.  The lower-bound estimate, 
which assumes all preprocessing communication can be 
aggregated into a single message, highlights the potential for HCT 
to reduce communication. These preliminary results suggest that 
combining the additional pruning of HCT with communication 
aggregation can lead to a more efficient multiagent search.   
Furthermore, we conjecture that HSPs can exploit other strategies 
to increase parallelism and reduce communication. Hunsberger, in 
solving STPs [3], eliminates the need for communication during 
search by adding additional constraints to decouple the problem.  
Although additional constraints could lead to an incomplete 
search method, which we would want to avoid, we do think that 
using techniques similar to Hunsberger’s can augment HCT 
reasoning.  That is, while tightening hybrid constraints, agents 
could negotiate “communication thresholds”.  These thresholds 
would represent how far one agent can tighten a common 
temporal constraint before another agent is likely to care about it.  
This is important when using HCT, because not every tightening 
of a bound is likely to affect other agents.  This raises the 
possibility that two agents could both establish partial 
assignments that are inconsistent with each other.  In these 
scenarios, we hope to use strategies similar to those in [9] to make 
adjustments local to an agent to resolve the issue, while 

maintaining a sound, complete search.  Once again, we believe 
HCT will be critical in making local adjustments, since if the 
conflict is due to a hybrid constraint, HCT could assist in 
recognizing similar hybrid constraints that will also cause 
problems if the correct adjustments are not made. 
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Figure 10.  Estimated Number of Messages Passed 
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