
673

Evaluating Hybrid Constraint Tightening for Scheduling Agents
James C. Boerkoel Jr. & Edmund H. Durfee

Computer Science and Engineering
 University of Michigan
Ann Arbor, MI 48109

{boerkoel, durfee}@umich.edu

ABSTRACT
Hybrid Scheduling Problems (HSPs) combine temporal and
finite-domain variables via hybrid constraints that dictate that
specific bounds on temporal constraints rely on assignments to
finite-domain variables. Hybrid constraint tightening (HCT)
reformulates hybrid constraints to apply the tightest consistent
temporal bound possible, assisting in search space pruning. The
contribution of this paper is to empirically evaluate the HCT
approach using a state-of-the-art Satisfiability Modulo Theory
solver on realistic, interesting problems related to developing
scheduling agents to assist people with cognitive impairments.
We demonstrate that HCT leads to orders of magnitude reduction
of search complexity. The success of HCT is enhanced as we
apply HCT to hybrid constraints involving increasing numbers of
finite-domain variables and finite-domains with increasing size, as
well as hybrid constraints expressing increasing temporal
precision. We show that while HCT reduces search complexity
for all but the simplest problems, the relative effectiveness is
dampened on problems with partially conditional temporal
constraints and hybrid constraints with increasing temporal
disjunctions. Finally, we present our preliminary investigations
that indicate that HCT can assist in increasing communication
efficacy in a multiagent setting.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – scheduling.

General Terms
Algorithms, Performance, Experimentation

Keywords
Hybrid Constraint Tightening, Scheduling Agents

1. INTRODUCTION
People suffering from cognitive impairments often struggle to live
life independently. Recently, work has gone into creating
systems that assist such people in completing everyday activities,
such as scheduling their days [5]. For example, modeling a
scheduling problem as a Simple Temporal Problem (STP) or a
more general Disjunctive Temporal Problem (DTP) works well
when scheduling a predetermined set of activities [5]. More
generally, scheduling a day’s activities involves two important

tasks: 1) selection: deciding which activities to do and how to
perform them, and 2) scheduling: deciding when to perform such
activities. Our goal is to create scheduling agents that act on
behalf of people with cognitive impairments by both selecting
which activities to do and scheduling when to do them.

Recognizing that the finite-domain Constraint Satisfaction
Problem (fd-CSP) formulation handles selection tasks well, and
that the DTP framework handles scheduling tasks well, Schwartz
combined these approaches into a single framework, the Hybrid
Scheduling Problem (HSP) [6]. The HSP framework allows
finite-domain variables and temporal variables to interact through
hybrid constraints, each of which is simply a disjunction of a
finite-domain constraint and a temporal constraint. While
studying the suitability of the HSP model for scheduling agents,
we developed hybrid constraint tightening (HCT), which
reformulates hybrid constraints so as to enhance the ability of the
finite-domain variables to inform the temporal variables and vice
versa, increasing pruning during search [1].

This paper makes several novel contributions to these prior
efforts. First, we substantiate our claim that HCT can be used
with arbitrary constraint system solvers by incorporating HCT
into a state-of-the-art, off-the-shelf solver. Whereas [1] focused
on HCT’s analytical properties, we demonstrate empirically that
HCT reduces the actual runtime of search by an order of
magnitude while solving realistic, interesting problems.
Additionally, we show that as scheduling agents handle
conditional temporal constraints that are more general along
certain dimensions, this speedup grows. We also show that other
generalizations of conditional temporal constraint structures can
dampen the benefits of HCT. Finally, we provide discussion
about the appropriateness of using HCT and the HSP towards our
goal of developing coordinated, autonomous scheduling agents to
act on behalf of people with cognitive impairments, and though
we have yet to develop complete, efficient strategies to solve
multiagent HSPs, we estimate and discuss the impact of HCT on
communication overhead.

2. A MOTIVATING EXAMPLE
Imagine a scheduling agent given the task of scheduling Bob’s
appointments during a visit to a healthcare facility. Bob has two
appointments, both for routine checkups. Each checkup has
associated with it a subset of available, qualified doctors. Dr.
Smith can handle the first appointment; Dr. Jones can handle the
second appointment, and Dr. Williams can handle either
appointment. Bob has allotted 60 minutes to his visit, which
should be plenty of time considering each appointment should
only take 20 minutes, though the appointments cannot overlap.
The order in which the appointments occur does not matter. If he
meets with two different doctors, though, Bob likes to give

Cite as: Evaluating Hybrid Constraint Tightening for Scheduling Agents,
Boerkoel, J. and Durfee E., Proc. of 8th Int. Conf. on Autonomous Agents
and Multiagent Systems (AAMAS 2009), Decker, Sichman, Sierra, and
Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-
XXX..
Copyright © 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Cite as: Evaluating Hybrid Constraint Tightening for Scheduling
Agents, James C. Boerkoel Jr., Edmund H. Durfee, Proc. of 8th Int.
Conf. on Autonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009,
Budapest, Hungary, pp. 673–680
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

674

himself plenty of time to walk to the next doctor’s office and get
settled (5-15 minutes depending on the doctor).

To model this problem, the scheduling agent must represent
various types of information. First, it must capture the choices it
has regarding selecting a doctor for each appointment. Since
there are a small number of choices here, it makes sense to
represent these choices with finite-domain variables. The first
appointment (variable A1) has a finite-domain containing two
elements, Dr. Williams (D1) and Dr. Smith (D2), while the
domain of the second appointment (A2) also has two values, Dr.
Williams and Dr. Jones (D3). Although none exist in this
example, constraints between variables could limit the allowable
combinations of values, such as Bob not wanting to see Dr.
Williams for both appointments. Problems containing only finite-
domain variables and constraints are known as (finite-domain)
Constraint Satisfaction Problems (fd-CSPs). Next, the scheduling
agent must represent the timing constraints. First, it makes sense
to represent each important point in time with timepoint variables;
one for the starting and ending time of each appointment
(A1.Start, A2.End, etc.). This allows the scheduling agent to
express the timing constraints as temporal differences, which
constrain the difference between two timepoint variables with a
temporal bound. For example, A1.End – A1.Start 20 and
A1.Start – A1.End -20 represent the maximum and minimum
durations of appointment A1 respectfully, and A2.End – A1. Start

 60 and A1.End – A2.Start 60 enforce the 60 minute overall
(makespan) constraint.

The Simple Temporal Problem (STP) is a temporal problem that
contains temporal differences as its constraints, and can be solved
in polynomial time using an all-pairs-shortest-path-algorithm [4].
However, temporal difference constraints cannot be used to
simply prevent appointments from overlapping when the order of
the appointments does not matter. This requires a more general
disjunctive temporal constraint, which expresses constraints as a
disjunction of temporal difference constraints. For example, a
general non-overlap constraint would look like A1.End – A2.Start

 0 || A2.End – A1.Start 0, or in words, A1 must end before A2
starts or A2 must end before A1 starts. A problem containing
these more general temporal constraints is called the Disjunctive
Temporal Problem (DTP). DTPs are solved by selecting a
temporal difference from each disjunctive temporal constraint to
enforce. After a complete selection is made, the resulting
component STP can be solved in polynomial time; however, since
there are exponentially many such component STPs, solving
DTPs in general takes exponential time [4]. Note that though we
claimed Bob’s non-overlap constraints actually depend on which
doctors are selected, we have not accounted for this in our
description yet. Before we explain how to model these
constraints, we formally introduce the hybrid scheduling problem.

3. BACKGROUND

3.1 The HSP
DTPs are good for scheduling when to do things, and fd-CSPs are
good for deciding what combination of things to do. A Hybrid
Scheduling Problem (HSP) [6] combines the full expressive
power of fd-CSPs and DTPs into a single framework. A HSP is a
tuple <V, C>. The set of variables V can be partitioned into two
sets: VF, the set of finite-domain variables, each with its own

finite-domain of possible values, DF; and VT, the set of temporal
variables each with temporal domain DT, where DT contains real
numbers and is considered implicit. The set of constraints C can
be partitioned into three sets: CF, the set of finite-domain
constraints defined over VF; CT, the set of disjunctive temporal
constraints defined over VT; and CH, the set of hybrid constraints
defined over VF ∪ VT excluding CF and CT. A hybrid constraint is
defined to be the disjunction of exactly one finite-domain
constraint and exactly one disjunctive temporal constraint. A
HSP is solved when a satisfying assignment is made to each
variable in V such that all the constraints in C are respected.
Clearly, a solution to the overall HSP problem must also be a
solution to the fd-CSP sub-problem <VF, CF> and to the temporal
CSP sub-problem <VT, CT>. However, due to CH, arbitrary
solutions to these pure subproblems cannot necessarily be
combined to solve the overall HSP.

Returning to the example, the lag time between appointments
depends on which doctors are selected. We call such constraints
conditional temporal constraints. We express such constraints
with a group of hybrid constraints. Figure 1 (upper) expresses the
general conditional temporal constraint enforcing the non-overlap
constraint of the problem. Notice that Figure 1 (middle) uses
hybrid constraints in their implicative form to demonstrate that
the values the temporal bounds (B1 and B2) take depend on the
assignments to the finite variables. This particular conditional
temporal constraint contains two finite variables (A1 and A2), a
disjunction of two temporal differences, and requires four hybrid
constraints to express, since each variable has two values,
yielding four possible combinations of values.

Figure 1. Example conditional temporal constraint (upper)
whose bounds are subject to untightened hybrid constraints
(middle) or equivalent tightened hybrid constraints (lower).

3.2 The HCT Algorithm
As a precursor to the more general HSP, Moffitt, Peintner, and
Pollack [4] described a finite-domain extension to the DTP and
noted that conditional temporal constraints have the property that,
at any point in time, one can enforce the temporal constraint with
the tightest bound consistent with all remaining feasible values.
Their least-commitment approach augments a search algorithm to
apply and prune more of the search space. We realized that
similar pruning can be achieved by reformulating the hybrid
constraints in an independent preprocessing step called Hybrid
Constraint Tightening (HCT), instead of altering the search
algorithm to perform similar reasoning but doing so a possibly
exponential number of times [1].

Our HCT algorithm groups all hybrid constraints involved in a
conditional temporal constraint together and then sorts them based

James C. Boerkoel Jr., Edmund H. Durfee • Evaluating Hybrid Constraint Tightening for Scheduling Agents

675

on their temporal bounds. Figure 1 (middle) shows the sorted
group of hybrid constraints relating to our example. The
algorithm then visits each hybrid constraint in sequence, starting
with the tightest, and reformulates each constraint by replacing its
finite-domain constraint with a new finite-domain constraint. The
algorithm forms this new finite-domain constraint by merging its
current set of allowable assignments with the set of allowable
assignments of the tighter hybrid constraints. Figure 1 (lower)
demonstrates how HCT would reformulate the constraints from
our example. This algorithm runs in polynomial time, and the
reformulated constraints result in a sound and complete search. A
more complete description and analysis of this algorithm as well
as a comparison to previous approaches appears in [1]. By
adopting HCT, our scheduling agent can apply the tightest
possible temporal bounds for the conditional temporal variable at
all times, which our previous analysis suggests can help
significantly reduce the temporal and, in turn, finite search spaces.

4. EMPIRICAL METHODOLOGY
The purpose of our empirical analysis is to look beyond abstract
time-complexity analyses to more fully understand the space of
HSPs where HCT is particularly effective, as well as to test our
claim that HCT can be incorporated into off-the-shelf solvers.
Thus, we present a problem generation technique to give us
realistic, interesting problems, introduce HCT as a preprocessing
step to a state-of-the-art SMT solver, and track performance
metrics that illuminate HCT’s effect on search complexity.

4.1 Problem Generation
Since HSPs, and hybrid constraints in particular, are largely the
result of merging components from fd-CSPs and DTPs, aspects
that influence the solution complexity of solving fd-CSPs and
DTPs will clearly influence the solution complexity of HSPs.
Before we discuss how we generate realistic, interesting
scheduling problems, we first review the parameters known to
affect solution complexity in generating interesting fd-CSPs and
DTPs. First, fd-CSP generators [8] often use a variation of the
parameters <NFD, mFD, kFD, dFD, pFD>, where NFD is the number of
variables, mFD is the number of constraints, kFD is the arity of each
constraint, dFD is the maximum domain size, and pFD is the
density of allowable tuples for a particular constraint. Canonical
DTP generators [7] use the parameters <NT, mT, kT, LT>, where NT
is the number of timepoints, mT is the number of constraints, kT is
the number of disjuncts per constraint, and where all bounds are
chosen uniformly between [-LT, LT]. Both types of generators
have parameters dictating the number of variables (NFD, NT) the
number of constraints (mFD, mT), as well as the structure and
“tightness” of the constraints (kFD, dFD, pFD, kT, LT). Exploring
HCT’s effect on the entire range of possible hybrid constraint
structures, then, involves investigating the effect of varying each
parameter in the union of these two problem generators types.

We adopt a strategy for generating difficult scheduling problems
containing both finite-domain and temporal components from [4],
which we adapt to loosely match our example. The generator
takes parameters <A, L, B, pL, pO, CMAX, pH, pFD, kFD, kT >, where
A is the number of appointments the scheduling agent must
schedule, L is the number of locations (with one doctor per
location), B is a bounds matrix indicating a more general lag time,
ranging from 5 to 40 (including extra time for paper work,
recovery period from stress tests, etc) between each pair of

locations, pL is the probability that the doctor at a particular
location is able to perform the appointment, pO is the probability
that a non-overlap constraint is enforced between any pair of
appointments (e.g., appointments require the presence of a shared
resident nurse), CMAX is the maximum allowable makespan of the
schedule, or the total length of time the patients will be visiting
the medical campus, pH dictates the relative constraint
composition of the problem (hybrid vs. non-hybrid constraints),
and finally pFD, kFD, and kT, all correspond directly to their
original semantics. Feasible and nontrivial problems are
guaranteed by calculating the minimum possible makespan for
each parameter setting.

These parameters relate directly to those of the fd-CSP and DTP
generators. First, A encompasses both NFD and NT, since each
activity has two timepoints (start and end) and one finite-domain
variable (location) associated with it. Thus, NFD and NT grow
linearly as A grows. Next, L represents dFD, the maximum size of
domain in fd-CSPs, with pL probabilistically dictating how large
each individual finite-domain is. CMAX correlates with LT, with B
restricting bounds to realistic times. Finally, pO probabilistically
determines the number of constraints in the problem, thus
capturing both mFD and mT. Later, we will discuss how we adapt
the generator to capture the effect that HCT has on the structural
changes of hybrid constraints implied by pH, pFD, kFD, and kT.

We generate 50 problems for each setting of the parameters,
varying parameters as described in Section 5. Any parameter that
we do not vary in a given experiment is set to its following default
value: A=10, L=6, pL=0.33, pO=0.9, kFD=2, kT=2, pFD=1.0,
pH=1.0, B[i][i] = 0 and B[i][j] is selected uniformly from [5,40]
when i j, and CMAX is set as described above.

4.2 SMT Solvers
As noted in [6], Satisfiability Modulo Theory (SMT) technology
represents the state-of-the-art in solving HSPs. SMT solvers
generalize powerful boolean satisfiability (SAT) solving
techniques with additional first-order theories. Z3 is a highly
competitive SMT solver published by Microsoft Research, and
widely available for download [2]. For our experimentation, we
use Z3 version 1.2 on a Windows XP machine with 2.0 GHz
processor and 2.0 GB of RAM. Since there is an element of
randomness associated with the Z3 solver, we average the results
for each problem across 20 uniquely seeded runs.

4.3 Performance Metrics
The SMT solver we use reports three statistics relating to search
complexity. A decision is made any time the solver must choose
a literal in a disjunctive clause, similar to a variable assignment in
more traditional fd-CSP nomenclature. A conflict occurs any
time the solver encounters an empty clause that leads to
backtracking, similar to a variable with an empty domain.
Finally, the solver also reports the amount of time that is required
before a consistent assignment has been found. Since we are most
interested in discovering the space of HSPs for which HCT is
most effective, we will often report speedup, or the ratio of the
number of decisions, conflicts, or time using HCT to the
corresponding metric without HCT. All speedups have been
found to be statistically significant using a students paired T-test,
unless otherwise noted.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

676

5. EMIRICAL RESULTS
We explore the efficacy of HCT along each of the dimensions
mentioned in Section 4.1. First, we look at how HCT changes
search performance as we scale the problem size and difficulty.
Next we show that the margin of improvement of HCT varies as
the structure of the conditional temporal constraints varies. We
examine four generalizations of this structure for which relative
HCT performance improves. Finally, we examine two
generalizations of conditional temporal constraint structure for
which applying HCT becomes less beneficial. It is important to
note that we easily succeeded in overlaying HCT on Z3. This
was done by HCT performing the reformulation on the original
HSP, and then translating it to an SMT problem, using a process
described in [6].

5.1 The Efficacy of HCT on Problems with
Simple Hybrid Constraints
Given our choice to model our scheduling problem as a HSP, it is
important to show that HCT is effective as the number of
activities (A) and constraints (pO) increases. We examine scaling
these two dimensions in the following subsections.

5.1.1 Increasing the Number of Activities
The exponential nature of search in the HSP means it is critical
that any approach to improve the effectiveness of search scales
well as the number of activities (A) increases. In this section, we
increase the number of activities involved in the problem, while
allowing the number of non-overlap constraints to grow
proportionally based on pO as described in Section 4.1. This
scaling is similar to imagining that instead of scheduling just two
doctor appointments for Bob, a scheduling agent has been handed
the task of scheduling appointments for an increasing number of
people.

0.1

1

10

100

1000

10000

100000

7 8 9 10 11 12 13 14 15
Number of Activities (A)

Conflicts w/o HCT Conflicts w/ HCT
Decisions w/o HCT Decisions w/ HCT
Time (sec) w/o HCT Time (sec) w/ HCT

Figure 2. Logarithmic Scale of the Number of Conflicts,

Decisions, and Seconds as Agents Handle Additional
Activities

Figure 2 shows how the median number of conflicts, decisions,
and time required for search with and without HCT grows, using a
log scale on problems with 7 to 15 activities. Overall, HCT yields
an improvement of nearly an order of magnitude, regardless of the
size of the problem. However, the difference in time for smaller
problems is much less significant, and in fact, there is a visible
crossover point between 8 and 9 activities. Thus, for more than
half of the problems with fewer than 9 activities, the complexity
savings yielded by HCT does not overcome the overhead of
performing the HCT preprocessing algorithm. While we mostly
care about relative performance, Figure 2 reports median,

absolute statistics to inform the reader of the general complexity
of the problem space and demonstrates that HCT yields an
improvement both in expectation and for the majority (median) of
the problems. All subsequent figures will report only relative
performance (in terms of speedup).

5.1.2 Increasing the Number of Constraints
Although our strategy for setting CMAX already guarantees the
tightest feasible makespan, the burden on search increases as we
increase pO. It is easy for the scheduler to find a feasible schedule
for a problem with no overlap constraints: simply schedule
everything at the same time. However, by adding a non-overlap
constraint, the solver may have to search over the possible orders
in which the appointments might occur before finding an order
that respects the minimal feasible CMAX, since the lag time from
one doctor to another is not necessarily reflexive. Adding non-
overlap constraints increases the possible appointment orderings
that must be searched before finding an ordering that “fits”.
Figure 3, which varies pO while holding the number of activities
steady, is similar to Figure 2 in many qualitative ways. There is
an initial period where the overall runtime using the HCT fails to
significantly beat the runtime of search without HCT. Further, it
is obvious that sufficiently many constraints are needed before
HCT yields improvements in time efficiency that match the
significance we see in the other statistics, though, overall, HCT
scales well with the number of constraints.

0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Probability (pO) Of A Non-Overlap Between a Pair of Activities

Sp
ee

du
p

Conflicts

Decisions

Time (sec)

Figure 3. Agents Handling More Constraints

5.2 Conditional Temporal Constraint
Generalizations That Increase HCT Efficacy
In this section, we examine generalizations of the conditional
temporal constraint representation by varying the settings of
parameters pH, dFD, kFD, and CMAX. These generalizations all have
one thing in common: scheduling agents using HCT enjoy an
increased speedup over scheduling agents not using HCT. This is
critical because realistic, interesting problems tend to push the
boundaries of problem representations in these ways.

5.2.1 Increasing Temporal Constraint Precision
Consider the example conditional temporal constraint in Figure 1.
A knowledge engineer could replace B1 and B2 with their
respective minimum possible values (-15 for both) instead of
allowing them to be conditional on finite-domain variables. The
result is that all these conditional temporal constraints could be
approximated with more restrictive, non-conditional temporal
constraints. Such a decision would come at the cost of temporal
constraints that imply tighter bounds than needed, resulting in
schedules with unnecessary slack time, and more alarmingly,

James C. Boerkoel Jr., Edmund H. Durfee • Evaluating Hybrid Constraint Tightening for Scheduling Agents

677

resulting in an algorithm that is no longer complete (with respect
to the original, more general constraints). For example, by
always spending 15 minutes between appointments, the
scheduling agent would have not been able to find Bob a feasible
schedule if he only had 45 minutes even though one exists using
conditional temporal constraints. To test how HCT performs on
these problems, we duplicate the experimentation of Section
5.1.2. However, we now hold pO constant while we vary pH,
which is the probability that a non-overlap constraint is expressed
using a conditional temporal constraint instead of the
corresponding non-conditional temporal constraint.
Figure 4 shows that speedup increases with pH across the
statistics, although the benefit does not overcome the
preprocessing overhead until pH > 0.2. Beyond the results in
Figure 4, note that, though it may seem that replacing normal
temporal constraints with their hybrid counter-parts would lead to
a more complex search, solving the problem containing only
hybrid non-overlap constraints using HCT (pH=1.0) finds a
solution over 30 times faster than it takes the same solver to find a
solution using only temporal constraints (pH=0.0). Furthermore,
when pH=1.0 search is complete and does not force unnecessary
slack into the schedule.

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability (pH) Non-Overlap Constraint is a Conditional Temporal Constraint

Sp
ee

du
p

Conflicts
Decisions
Time

Figure 4. Increasing Temporal Constraints Precision

5.2.2 Increasing Finite-Domain Size
Our motivating example involved a scheduling agent selecting
between two doctors for each appointment, and as a result, the
conditional temporal constraint enforcing non-overlap contained
four hybrid constraints. Similarly, our problem generator
constructs finite-domains containing, in expectation, two values.
However, more generally, a scheduling agent must handle
temporal constraints conditioned on finite-domains even as the
number of values per domain (dFD) increases. If the domains of
A1 and A2 from the example problem both contained only a
single doctor, the conditional temporal constraint in Figure 1
would have been expressed using a single hybrid constraint, since
only one consistent finite-domain assignment would exist. Thus
B1 and B2 could simply be replaced with the bounds of the sole
hybrid constraint, eliminating the need for HCT. So for HCT to
have any effect at all, an agent must be able to select values for at
least some of the finite-domain variables that influence the
bounds on corresponding temporal constraints. As the finite-
domains that a temporal constraint is conditioned on grow, more
hybrid constraints are needed to express the overarching
conditional temporal constraint, one for each possible
combination of value assignments. For example, suppose A1 was
a more routine physical, and thus could be performed by any of 8
doctors. The conditional temporal constraint would now require
16 hybrid constraints, instead of four like in Figure 1 (middle).
We explore the impact of HCT when increasing the number of

hybrid constraints used to express a conditional temporal
constraint.
HCT works by lifting information common to multiple finite-
domain variable/value assignments involved in a particular
conditional temporal constraint, and using that information to
assist in pruning. Since the overall search space grows
exponentially as the size of the finite-domains grow, we
hypothesize that any information that can help pruning may
become increasingly valuable. We test this hypothesis by varying
the domain sizes of the finite-domain variables in our current
doctor appointment scheduling domain. Since previously the size
of variable domains were probabilistically determined (each
doctor can service each appointment with a given probability), we
altered the formulation slightly, replacing pL with a new
parameter nL, which dictates the number of doctors who can
service the appointment (size of each finite-domain), with doctors
being chosen randomly from the pool of doctors with uniform
probability. Since we had been using a pL value of 0.33, we
emulate this by updating L to be equal to 3*nL for each problem.
As shown in Figure 5, HCT grows in effectiveness as the number
of values per finite-domain variable increases. While we see
immediate benefit in the speedup of decisions and conflicts, it
takes problems with at least 4 values in each domain before this
reduction in complexity compensates for the preprocessing
overhead. This confirms our hypothesis that HCT works best
when temporal bounds are dependent on many values, each
specified as a hybrid constraint, allowing search to prune using
the tightest consistent value.

0

5

10

15

20

25

30

2 3 4 5 6 7 8
Number of Doctors / Appointment (nL)

Sp
ee

du
p

Conflicts
Decisions
Time

Figure 5. Increasing Finite Domain Size

5.2.3 Increasing Finite Variables
Section 5.2.2 demonstrates that, as the number of values per
finite-domain variable involved in a conditional temporal
constraint increases, HCT becomes increasingly important for
efficiently finding a schedule. However, instead of increasing the
number of values per finite-domain, we could also generalize
conditional temporal constraints by increasing the number of
finite variables on which they depend. This is achieved by
increasing the finite-domain arity (kFD) of the hybrid constraints.
The conditional temporal constraint of our original example
(Figure 1) represented a non-overlap constraint whose bounds
depended on two finite-domain variables: the doctors selected for
each appointment. However, more generally, the lag time
required between appointments could depend on any number of
variables (e.g., also paperwork requirements, recovery time, etc.).
Such a change would require hybrid constraints whose finite-
domain component contains either fewer (or more) variables.
As Section 5.2.2 demonstrates, increasing the number of hybrid
constraints used to express a conditional temporal constraint (due

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

678

to larger finite-domains) increases the efficacy of HCT. So to
avoid conflating these results, we ensure that each conditional
temporal constraint depends on a constant number of hybrid
constraints by using the nL parameter to adjust the number of
values in the domain of each finite-domain variable so that the
total number of possible assignments is held constant (e.g., one
variable with 9 elements in its domain is replaced with two
variables, each with 3 elements in their domains). As discussed
earlier, HCT excels at applying the tightest consistent bound
possible regardless of the number of remaining domain values.
So, whereas an untightened constraint requires a full assignment
to every involved finite-domain variable, tightened hybrid
constraints can successfully leverage knowledge from partial
assignments to tighten the bounds on the respective temporal
constraint. Therefore, it is our expectation that HCT will be more
effective as temporal constraints become conditioned on an
increasing number of variables.
Figure 6 confirms our expectation that HCT’s efficacy increases
as the number of variables increases. This result is important
since, combined with 5.2.2, knowledge engineers can have less
fear of overwhelming scheduling agents by giving them more
control over deciding aspects of activities that impact the
schedule. Notice that speed-ups, reported using a logarithmic
scale, are much higher in general than occurred in the experiments
seen so far. This is because temporal constraints were
conditioned on many more finite-domain assignments, as well as
fewer overall activities, and this magnifies the effect seen in 5.2.2.

1

10

100

1000

1 2 3
Number of Finite Variables in Conditional Temporal Constraint

Sp
ee

du
p

Conflicts
Decisions
Time

Figure 6. Increasing the Number of Finite-domain Variables

5.2.4 Finer Granularity of Temporal Bounds
Time is inherently continuous, and the DTP exploits this for
greater scheduling flexibility while mitigating the potential
exponential blowup often associated with dealing with an
infinitely large domain. Since the DTP, and thus implicitly the
HSP as well, remains largely agnostic to the granularity of
temporal bounds, it is worth investigating if the HCT process also
remains unaffected. In the extreme, imagine that all the temporal
bounds in Figure 1 (middle) were the same value. Here, HCT
would reformulate the hybrid constraint into a single hybrid
constraint, and thus a single, inevitable non-conditional temporal
constraint. Though search would be able to exploit this constraint
immediately, no further opportunities would exist for tightening
the bounds. In contrast, when each of the temporal bounds is
unique, these bounds provide significant tightening opportunities
as search progresses. In the experiments so far, all temporal
bounds were chosen uniformly from integers between 5 and 40
(35 different bounds). We test how HCT performs as we change
the number of allowable values to choose from, ranging from 1 to
35, corresponding to varying levels of granularity. We do this by

selecting, for example, two integers uniformly from [5,40], and
then assigning temporal bounds randomly from this pair of values.
Figure 7 shows that, in fact, as scheduling agents handle temporal
constraints expressed using an increasing number of unique
bounds, the speedup achieved by applying HCT also grows. This
is good news for scheduling agents; HCT mitigates computational
concerns over expressing temporal constraints as precisely as
possible, without concern for the granularity at which temporal
bounds are chosen. Once again, we see that the importance of
HCT grows as we give scheduling agents increasingly general
conditional temporal constraints. HCT assists search in
exploiting even subtle differences in temporal bounds.

2
3
4
5
6
7
8
9

10
11
12

0 5 10 15 20 25 30 35
Number of Unique Values

Sp
ee

du
p

Conflicts
Decisions
Time

Figure 7. Finer Granularity of Temporal Bounds

5.3 Conditional Temporal Constraint
Generalizations That Decrease HCT Efficacy
Unfortunately, while we have shown HCT efficacy grows with
increasing generality along dimensions like the number of
variables and values they are conditioned on, HCT efficacy does
not grow with increasingly general hybrid constraints across all
dimensions. Here we examine two such generalizations,
involving pFD and kT, that dampen HCT’s ability to assist in
pruning the search space. It is important to note that while certain
conditional temporal constraint structures decrease the relative
benefits of HCT, the only time applying HCT is actually
detrimental is when the time cost associated with the applying the
HCT algorithm does not outweigh the benefits of the HCT
reformulation of constraints on sufficiently easy problems.

5.3.1 Partially Conditional Temporal Constraints
In Figure 1 (middle), every possible finite-domain assignment
combination is involved in a hybrid constraint and implies a
unique set of temporal bounds. However, in general it is not
required that every assignment has to imply a temporal bound.
This would correspond to Figure 1 (middle) where one or more of
the hybrid constraints were eliminated. For example, imagine that
the constraint in Figure 1 was between appointments belonging to
two different patients. Then, we might only care about not
overlapping when both appointments are with the same doctor. In
this case, all but the first row of Figure 1 (middle) could be
eliminated. A hybrid constraint thus not only expresses which
temporal bound to enforce, but also, by its presence, if a temporal
bound should be enforced at all. We call this generalization a
partially conditional temporal constraint. To investigate the
effect that these more general partially conditional temporal
constraints have on HCT efficacy, we vary the parameter pFD ,
which is the probability that a particular assignment of values to
the finite-domain variables will imply a temporal constraint in a
given conditional temporal constraint.

James C. Boerkoel Jr., Edmund H. Durfee • Evaluating Hybrid Constraint Tightening for Scheduling Agents

679

Decreasing pFD is likely to change the effectiveness of HCT.
When pFD = 1.0, tightened hybrid constraints can immediately
apply the tightest consistent temporal constraint with the
remaining values of the finite-domain constraints to assist in
pruning the temporal space, with the bounds tightening as the
domains of the finite-domain variables are reduced. With pFD <
1.0, the tightened hybrid constraints will still apply the tightest
consistent temporal constraint; however now the tightest
consistent constraint may, in fact, be no constraint at all.
Furthermore, HCT is now lifting information from a smaller set of
value combinations, which, shown in 5.2.2, decreases its efficacy.
Figure 8 confirms that as pFD decreases, so does the relative
effectiveness of HCT. Partial specification of temporal bounds
dampens the ability of HCT to lift and use information as
successfully during search. Not only does the relative
performance degrade as pFD decreases, there is actually a span of
pFD where the runtime overhead of performing and using HCT
exceeds the reduction in decisions and conflicts. Scheduling
agents must use HCT judiciously when their problems contain
conditional temporal constraints where the majority of the value
combinations do not imply temporal constraints.

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability (pFD) Finite-Domain Assignment Implies a Temporal Bound

Sp
ee

du
p

Conflicts
Decisions
Time

Figure 8. Partially Conditional Temporal Constraints

5.3.2 Increasing Temporal Disjunctions
In Figure 1 (upper) we showed that a non-overlap, conditional
temporal constraint is expressed by using two temporal
disjunctions whose temporal bounds were both conditioned on the
assignment of values to finite variables. However, a conditional
temporal constraint, just like a normal temporal constraint, is not
limited in the number of temporal differences it can involve in its
disjunction, and can have any temporal arity, kT. In fact, it is
completely realistic to assume that one doctor appointment
depends on the results of another. For example, if A1 must occur
before A2, Figure 1 (upper) could be replaced with a temporal
constraint looking like A1.End – A2.Start B1 (where we remove
the disjunction). Thus, we generalize conditional temporal
constraints by generalizing the structure of the temporal constraint
itself, varying the number of temporal disjuncts involved.
We first alter our example to contain constraints with a single
temporal difference by replacing the current non-overlap
constraints with non-overlap constraints where the relative order
of appointments has already been determined as described above.
Although conditional temporal constraints in problems we are
interested in tend to contain disjunctions of two or fewer temporal
differences, we can also alter the problem to contain conditional
temporal constraint with three or more temporal disjunctions.
Assume that doctors have two shifts, with a 60 minute break for
lunch. The doctors may be required to change rooms for their
afternoon session, thus travel times between doctors on campus
may change after lunch. In this case, there would be two sets of

non-overlap constraints, one for the morning and one for the
afternoon, each containing disjunctions among four temporal
differences. To capture this situation, a “morning” hybrid
constraint would contain a disjunction of four temporal
differences: either the appointments A1 and A2 do not overlap (as
expressed in Figure 1 (top)) or one of the activities occurs in the
afternoon (Noon – A1.Start 0 v Noon – A2.Start 0). A similar
constraint is introduced to enforce afternoon constraints.
The number of temporal differences involved in a hybrid
constraint has a direct effect on the runtime of the HCT algorithm,
since the tightest bound must be discovered for each temporal
difference, causing a linear increase in runtime. We expect that as
the number of temporal disjuncts involved in hybrid constraints
grows, the effectiveness of HCT will diminish, because a
tightened hybrid constraint will have a less immediate impact.
For example, if a scheduling agent knows ahead of time that one
appointment must end at least five minutes before another
appointment starts, it can take advantage of this information to
immediately prune the search space. In the case that the ordering
of appointments is irrelevant, the agent then knows either the first
appointment ends at least 5 minutes before the start of the second,
or the second appointment ends 5 minutes before the start of the
first. At this point, the scheduling agent must decide on an
ordering before it can apply the knowledge gleaned from HCT.
Figure 9 confirms that HCT prunes the search space more
effectively on problems containing hybrid constraints with only a
single temporal disjunction, with the speedup of conflicts and
decisions decreasing nearly identically. Surprisingly, the runtime
speedup actually increases slightly with increases in the number
of temporal disjuncts. This is partially an artifact of overall
search complexity. Problems with only a single temporal disjunct
require search over only the finite-domain variables, while
problems containing more temporal disjuncts require search over
both finite-domain and temporal meta-variables. Thus, problems
containing only a single temporal disjunct are solved much more
quickly, regardless of whether HCT is used or not, and so we see
a bit of a horizon effect where the problems are solved so quickly
that the HCT overhead prevents the time speedup from reaching
speedup levels similar to those seen in the number of decisions.

0
5

10
15
20
25
30
35
40

1 1.5 2 2.5 3 3.5 4

Number Of Temporal Disjunctions in Conditional Temporal Constraint

Sp
ee

du
p

Conflicts
Decisions
Time

Figure 9. Increasing Temporal Disjunctions

6. DISCUSSION
This paper takes significant steps forward in our understanding of
HSP solution methods, and in particular about using HCT
preprocessing. Validating that HCT can be applied easily to off-
the-shelf search algorithms expands the applicability of HCT to a
wider variety of cutting-edge solvers. Our systematic
examination of performance over the space of HSPs, especially
the structure of hybrid constraints, leads to a more complete
understanding of when HCT can be applied most successfully.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

680

HCT scales well with the number of activities and constraints, and
is only detrimental when problems are too easy, leading to
preprocessing costs that exceed the gains. We showed that
scheduling agents can use HCT to solve problems containing
conditional temporal constraints with increasing finite-domain
variable choices and bounds expressed at finer temporal
granularity more efficiently. Although we noted that HCT
becomes less effective when applied to partially conditional
temporal constraints and conditional temporal constraints with
increasingly large temporal disjunctions, the upside is that using
HCT sill improves the temporal complexity on HSPs with these
constraints. Furthermore, challenging problems generally contain
a rich mixture of hybrid constraint structures, leading to an order
(or greater) of magnitude reduction in solver runtime thanks to
HCT.
Our next steps are to use the HSP for scheduling problems that are
distributed across multiple scheduling agents, each autonomously
scheduling on behalf of a person with possible cognitive
disabilities. This paper highlights the effectiveness of using HCT
to prune the search space to speed performance. However, this
kind of forward checking could be costly when a HSP is
distributed across multiple agents, because to perform effective
pruning can require significant communication about partial
assignments. Figure 10 shows our empirically generated
estimates of the impact of using HCT on communication based on
a centralized, sequential search using a primitive solver (that we
could instrument for this purpose) lent to us by Schwartz [6]. We
estimate the upper-bound on the frequency of communication as
the number of agents increases by tallying every time a change is
made in one agent that could potentially affect another agent,
while we estimate the lower bound by optimistically assuming
that all communication between a pair of agents during a decision
cycle could be aggregated into a single message.
Prior to search, the increased pruning does in fact lead to a much
higher upper-bound on the amount of communication when HCT
is used. However, once search commences, the overall
communication is reduced significantly, due to less backtracking
thanks to HCT’s forward-checking. The lower-bound estimate,
which assumes all preprocessing communication can be
aggregated into a single message, highlights the potential for HCT
to reduce communication. These preliminary results suggest that
combining the additional pruning of HCT with communication
aggregation can lead to a more efficient multiagent search.
Furthermore, we conjecture that HSPs can exploit other strategies
to increase parallelism and reduce communication. Hunsberger, in
solving STPs [3], eliminates the need for communication during
search by adding additional constraints to decouple the problem.
Although additional constraints could lead to an incomplete
search method, which we would want to avoid, we do think that
using techniques similar to Hunsberger’s can augment HCT
reasoning. That is, while tightening hybrid constraints, agents
could negotiate “communication thresholds”. These thresholds
would represent how far one agent can tighten a common
temporal constraint before another agent is likely to care about it.
This is important when using HCT, because not every tightening
of a bound is likely to affect other agents. This raises the
possibility that two agents could both establish partial
assignments that are inconsistent with each other. In these
scenarios, we hope to use strategies similar to those in [9] to make
adjustments local to an agent to resolve the issue, while

maintaining a sound, complete search. Once again, we believe
HCT will be critical in making local adjustments, since if the
conflict is due to a hybrid constraint, HCT could assist in
recognizing similar hybrid constraints that will also cause
problems if the correct adjustments are not made.

1

10

100

1000

10000

100000

1000000

10000000

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

of Agents

of

 M
es

sa
ge

s (
es

tim
at

e)

Preprocess Upper Bound w/o HCT
Preprocess Upper Bound w/ HCT
Search Upper Bound w/o HCT
Search Upper Bound w/ HCT
Lower Bound w/o HCT
Lower Bound w/ HCT

Figure 10. Estimated Number of Messages Passed

7. ACKNOWLEDGEMENTS
The work reported in this paper was supported, in part, by the
National Science Foundation under grant IIS-0534280 and by the
Air Force Office of Scientific Research under Contract No.
FA9550-07-1-0262. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF or
United States Air Force.

8. REFERENCES
[1] Boerkoel, J. and Durfee, E. 2008. Hybrid Constraint

Tightening for Hybrid Constraint Scheduling. In Proc. Of
AAAI-2008, 1446-1449.

[2] de Moura, L. and Bjørner, N. 2008. Z3: An efficient SMT
solver. In Proc. Of TACACS-2008, 337-340.

[3] Hunsberger, L. 2003. Distributing the Control of a Temporal
Network among Multiple Agents. In Proc. Of AAMAS-2003,
899-906.

[4] Moffitt, M. Peintner, B., and Pollack, M. 2005.
Augmenting Disjunctive Temporal Problems with Finite-
Domain Constraints. In Proc. of AAAI-2005, 1187-1192.

[5] Myers, K. Berry, P. Blythe, J. Conleyn, K. Gervasio, M.
McGuinness, D. Morley, D. Pfeffer, A. Pollack, M. and
Tambe, M. An intelligent personal assistant for task and time
management. In AI Magazine, 2007.

[6] Schwartz, P. 2007. Managing Complex Scheduling
Problems with Dynamic and Hybrid Constraints. PhD. Diss.,
Computer Science and Engin., Univ. of Mich., Ann Arbor.

[7] Stergiou, K., and Koubarakis, M. 1998. Backtracking
algorithms for disjunctions of temporal constraints. In Proc.
of AAAI-98, 248–253.

[8] Xu, K, Boussemart, F. Hemery, F. and Lecoutre, C. 2007.
Random constraint satisfaction: Easy generation of hard
(satisfiable) instances. Artificial Intelligence 171: 514-534.

[9] Yokoo, M. and Hirayama, K. 2000. Algorithms for
distributed constraint satisfaction: A review. In Proc. Of
AAMAS-2000, 198-212.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

